Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.620
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621130

RESUMO

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Assuntos
Antibacterianos , Biofilmes , Bactérias , Rifampina/farmacologia , Escherichia coli/genética , Aderência Bacteriana
2.
Microb Pathog ; 190: 106642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599551

RESUMO

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Klebsiella , Klebsiella oxytoca , Pulmão , Bexiga Urinária , Klebsiella oxytoca/fisiologia , Humanos , Células Epiteliais/microbiologia , Pulmão/microbiologia , Infecções por Klebsiella/microbiologia , Bexiga Urinária/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Técnicas de Cocultura , Coinfecção/microbiologia , Linhagem Celular , Interações Microbianas , Infecções Oportunistas/microbiologia , Infecções Respiratórias/microbiologia , Virulência
3.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606299

RESUMO

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Células HeLa , Mucosa Intestinal/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Autofagia/fisiologia , Citocinas/metabolismo , Aderência Bacteriana
4.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582122

RESUMO

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Proteínas de Fímbrias , Geobacter , Geobacter/fisiologia , Geobacter/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/metabolismo , Fontes de Energia Bioelétrica
5.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38565315

RESUMO

Lactic acid bacteria, found in heterogenous niches, are known for their health-endorsing properties and are in demand as prospective probiotics. Hence, the scientific community around the globe is in continuous search for novel and new potential strains with extensive applicability and minimum risk. In this context, the present study evaluated the efficiency of Lactiplantibacillus plantarum (P2F2) of human origin, a highly autoaggregating and coaggregating (with pathogens) strain, for its colonization, growth promotion, and immunomodulation. Results indicated moderate hydrophobicity on adhesion to xylene and n-hexadecane and weak electron-donating properties with chloroform. The biofilm of P2F2 formed on polystyrene was strong and highly correlated to exopolysaccharide production. The autoaggregation was moderately correlated with hydrophobicity and biofilm production. It was noted that the P2F2 strain modulated the gut microbiota and increased intestinal villi length in Wistar rats. The lipid and glucose profiles remained intact. P2F2 treatment increased the activity of reactive oxygen species-generating cells in the peritoneal cavity, besides augmenting the mitogen-induced splenocyte proliferation and maintained the immunoglobulins at the normal level. Results from this study conclusively suggest that the strain P2F2 adheres to the intestine and modulates the gut ecosystem besides enhancing cell-mediated immunity without altering the serological parameters tested.


Assuntos
Lactobacillus plantarum , Probióticos , Animais , Humanos , Lactente , Ratos , Aderência Bacteriana , Fezes/microbiologia , Imunomodulação , Probióticos/farmacologia , Estudos Prospectivos , Ratos Wistar
6.
J Appl Oral Sci ; 32: e20230326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656049

RESUMO

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Assuntos
Resinas Acrílicas , Aderência Bacteriana , Biofilmes , Candida albicans , Bases de Dentadura , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Impressão Tridimensional , Staphylococcus aureus , Streptococcus mutans , Propriedades de Superfície , Molhabilidade , Streptococcus mutans/fisiologia , Staphylococcus aureus/fisiologia , Candida albicans/fisiologia , Bases de Dentadura/microbiologia , Resinas Acrílicas/química , Análise de Variância , Reprodutibilidade dos Testes , Prótese Total/microbiologia , Valores de Referência , Contagem de Colônia Microbiana , Modelos Lineares
7.
Food Microbiol ; 121: 104519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637081

RESUMO

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Assuntos
Manose , Salmonella typhimurium , Salmonella typhimurium/genética , Manose/metabolismo , Spinacia oleracea , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética
8.
Front Cell Infect Microbiol ; 14: 1375887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505286

RESUMO

Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.


Assuntos
Salmonella enterica , Salmonella typhimurium , Fímbrias Bacterianas/metabolismo , Aderência Bacteriana , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo
9.
Langmuir ; 40(13): 7029-7037, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38520398

RESUMO

Formation of biofilms on equipment used in various fields, such as medicine, domestic sanitation, and marine transportation, can cause serious problems. The use of antibiofouling and bactericidal modifications is a promising strategy for inhibiting bacterial adhesion and biofilm formation. To further enhance the antibiofilm properties of a surface, various combinations of bactericidal modifications alongside antibiofouling modifications have been developed. Optimization of the arrangements of antimicrobial peptides on the antibiofouling surface would allow us to design longer-life antibiofilm surface modifications. In this study, a postmodification was conducted with different design using the antimicrobial peptide KR12 on an antibiofouling copolymer film consisting of 2-methacryloyloxyethyl phosphorylcholine, 3-methacryloxypropyl trimethoxysilane, and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane. The distance of KR12 from the film was adjusted by combining different lengths of poly(ethylene glycol) (PEG) spacers (molecular weights are 2000 and 5000). The density of KR12 was ranged from 0.06 to 0.22 nm-2. When these modified surfaces were exposed to a nutrient-rich TSB suspension, the bacterial area formed by E. coli covered 5-127% of the original copolymer film. We found that a significant distance between the bactericidal and antibiofouling modifications, along with a higher density of bactericidal modifications, slows down the biofilm formation.


Assuntos
Peptídeos Antimicrobianos , Polímeros , Polímeros/farmacologia , Polímeros/química , Escherichia coli , Biofilmes , Aderência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/química
10.
J Agric Food Chem ; 72(13): 7219-7229, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507577

RESUMO

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Humanos , Animais , Suínos , Ovomucina , Aderência Bacteriana , Células CACO-2 , NF-kappa B/genética , NF-kappa B/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Diarreia/microbiologia , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mucosa Intestinal/metabolismo
11.
Microb Pathog ; 190: 106636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556103

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Assuntos
Citocalasina D , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacologia , Actinas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Morfolinas/farmacologia , Transdução de Sinais , Androstadienos/farmacologia , Wortmanina/farmacologia , Endocitose , Cromonas/farmacologia , Plasmídeos/genética
12.
mSystems ; 9(4): e0089123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440990

RESUMO

Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1ß, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE: Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.


Assuntos
Infecções por Mycoplasma , Mycoplasma bovis , Feminino , Humanos , Mycoplasma bovis/genética , Lipopolissacarídeos , Aderência Bacteriana , Imunidade , Fosfoproteínas Fosfatases , RNA Mensageiro , Serina
13.
Biomacromolecules ; 25(4): 2399-2407, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454747

RESUMO

Escherichia coli and other bacteria use adhesion receptors, such as FimH, to attach to carbohydrates on the cell surface as the first step of colonization and infection. Efficient inhibitors that block these interactions for infection treatment are multivalent carbohydrate-functionalized scaffolds. However, these multivalent systems often lead to the formation of large clusters of bacteria, which may pose problems for clearing bacteria from the infected site. Here, we present Man-containing Janus particles (JPs) decorated on one side with glycomacromolecules to target Man-specific adhesion receptors of E. coli. On the other side, poly(N-isopropylacrylamide) is attached to the particle hemisphere, providing temperature-dependent sterical shielding against binding and cluster formation. While homogeneously functionalized particles cluster with multiple bacteria to form large aggregates, glycofunctionalized JPs are able to form aggregates only with individual bacteria. The formation of large aggregates from the JP-decorated single bacteria can still be induced in a second step by increasing the temperature and making use of the collapse of the PNIPAM hemisphere. This is the first time that carbohydrate-functionalized JPs have been derived and used as inhibitors of bacterial adhesion. Furthermore, the developed JPs offer well-controlled single bacterial inhibition in combination with cluster formation upon an external stimulus, which is not achievable with conventional carbohydrate-functionalized particles.


Assuntos
Aderência Bacteriana , Nanopartículas Multifuncionais , Humanos , Escherichia coli/química , Carboidratos/química , Temperatura
14.
Braz Oral Res ; 38: e021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477807

RESUMO

The present study aimed to evaluate the influence of titanium surface nanotopography on the initial bacterial adhesion process by in vivo and in vitro study models. Titanium disks were produced and characterized according to their surface topography: machined (Ti-M), microtopography (Ti-Micro), and nanotopography (Ti-Nano). For the in vivo study, 18 subjects wore oral acrylic splints containing 2 disks from each group for 24 h (n = 36). After this period, the disks were removed from the splints and evaluated by microbial culture method, scanning electron microscopy (SEM), and qPCR for quantification of Streptococcus oralis, Actinomyces naeslundii, Fusobacterium nucleatum, as well as total bacteria. For the in vitro study, adhesion tests were performed with the species S. oralis and A. naeslundii for 24 h. Data were compared by ANOVA, with Tukey's post-test. Regarding the in vivo study, both the total aerobic and total anaerobic bacteria counts were similar among groups (p > 0.05). In qPCR, there was no difference among groups of bacteria adhered to the disks (p > 0.05), except for A. naeslundii, which was found in lower proportions in the Ti-Nano group (p < 0.05). In the SEM analysis, the groups had a similar bacterial distribution, with a predominance of cocci and few bacilli. In the in vitro study, there was no difference in the adhesion profile for S. oralis and A. naeslundii after 24 h of biofilm formation (p > 0.05). Thus, we conclude that micro- and nanotopography do not affect bacterial adhesion, considering an initial period of biofilm formation.


Assuntos
Aderência Bacteriana , Titânio , Humanos , Fusobacterium nucleatum , Microscopia Eletrônica de Varredura , Projetos de Pesquisa
15.
Methods Mol Biol ; 2763: 353-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347425

RESUMO

The ability of Lactobacillus to adhere to mucin is a parameter for evaluating the effectiveness of probiotics. In particular, a competitive inhibition assay of pathogenic bacteria using mucin-adherent lactobacilli is useful for identifying Lactobacillus strains capable of preventing mucus from being colonized by pathogens. Here, we describe an adhesion inhibition assay method for Helicobacter pylori to porcine gastric mucin by Limosilactobacillus reuteri.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Suínos , Lactobacillus/fisiologia , Mucinas , Aderência Bacteriana/fisiologia
16.
Crit Rev Eukaryot Gene Expr ; 34(3): 83-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305291

RESUMO

In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/epidemiologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Aderência Bacteriana , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
17.
ACS Appl Mater Interfaces ; 16(7): 8474-8483, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330222

RESUMO

Bacterial intracellular nucleotide second messenger signaling is involved in biofilm formation and regulates biofilm development. Interference with the bacterial nucleotide second messenger signaling provides a novel approach to control biofilm formation and limit microbial infection in medical devices. In this study, we tethered small-molecule derivatives of 4-arylazo-3,5-diamino-1H-pyrazole on polyurethane biomaterial surfaces and measured the biofilm resistance and initial biocompatibility of modified biomaterials in in vitro and in vivo settings. Results showed that small-molecule-modified surfaces significantly reduced the Staphylococcal epidermidis biofilm formation compared to unmodified surfaces and decreased the nucleotide levels of c-di-AMP in biofilm cells, suggesting that the tethered small molecules interfere with intracellular nucleotide signaling and inhibit biofilm formation. The hemocompatibility assay showed that the modified polyurethane films did not induce platelet activation or red blood cell hemolysis but significantly reduced plasma coagulation and platelet adhesion. The cytocompatibility assay with fibroblast cells showed that small-molecule-modified surfaces were noncytotoxic and cells appeared to be proliferating and growing on modified surfaces. In a 7-day subcutaneous infection rat model, the polymer samples were implanted in Wistar rats and inoculated with bacteria or PBS. Results show that modified polyurethane significantly reduced bacteria by ∼2.5 log units over unmodified films, and the modified polymers did not lead to additional irritation/toxicity to the animal tissues. Taken together, the results demonstrated that small molecules tethered on polymer surfaces remain active, and the modified polymers are biocompatible and resistant to microbial infection in vitro and in vivo.


Assuntos
Infecções Bacterianas , Materiais Biocompatíveis , Ratos , Animais , Materiais Biocompatíveis/farmacologia , Aderência Bacteriana , Poliuretanos/farmacologia , Ratos Wistar , Biofilmes , Infecções Bacterianas/microbiologia , Polímeros , Bactérias , Nucleotídeos
18.
Oper Dent ; 49(2): 178-188, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38196082

RESUMO

This study examined the influence of cariogenic environments on the surface roughness of ion-releasing restorative materials (IRMs). Custom-made stainless steel molds with holes of 5 mm × 2mm were used to fabricate 60 disc-shaped specimens of each of the following materials: Activa Bioactive (AV), Beautifil Bulk Restorative (BB), Cention N (Bulk-fill) (CN), and Filtek Z350XT (FZ) (Control). Baseline surface roughness (Ra) measurements were obtained using an optical 3D measurement machine (Alicona Imaging GmbH, Graz, Austria). The specimens were then randomly divided into five subgroups (n=12) and exposed to 10 ml of the following mediums at 37°C: distilled water (DW), demineralization solution (DM), remineralization solution (RM), pH cycling (PC) and air (AR) (control). Ra measurements were again recorded after one week and one month, followed by statistical evaluations with two-way analysis of variance (ANOVA) to determine interactions between materials and mediums. One-way ANOVA and post hoc Games Howell tests were performed for intergroup comparisons at a significance level of 0.05. Mean Ra values ranged from 0.085 ± 0.004 (µm) to 0.198 ± 0.001 µm for the various material-medium combinations. All IRMs showed significant differences in Ra values after exposure to the aqueous mediums. The smoothest surfaces were observed in the AR for all materials. When comparing materials, AV presented the roughest surfaces for all mediums. All IRM materials showed increased surface roughness over time in all cariogenic environments but were below the threshold value for bacterial adhesion, except for AV 1-month post immersion with pH cycling. Therefore, besides AV, the surface roughness of IRMs did not deteriorate to an extent that it is clinically relevant.


Assuntos
Resinas Compostas , Materiais Dentários , Resinas Compostas/uso terapêutico , Teste de Materiais , Água , Aderência Bacteriana , Propriedades de Superfície
19.
Biomater Adv ; 158: 213766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232578

RESUMO

Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.


Assuntos
Aderência Bacteriana , Titânio , Titânio/farmacologia , Técnicas de Cocultura , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
20.
Langmuir ; 40(3): 1698-1706, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198688

RESUMO

Bacterial fouling and biofilm formation on surfaces have been ongoing problems in real life as well as in the medical field. Different approaches have been taken to tackle the issues, from costly surface modification to antibiotic-delivering strategies. In this study, we examined the potential of using stabilized microbubbles (MBs) to shield against bacterial adhesion. Three types of surfaces were tested: hydrophilic glass (hydrophilic surface), neutral hydrophobic polystyrene (PS)-coated surfaces, and negatively charged hydrophobic octadecyltrichlorosilane (OTS)-coated surfaces. By evaluating the colony-forming unit (CFU) values from each surface, MBs stabilized by 0.05 mM SDS were shown to only produce significant reduction of Staphylococcus aureus adhesion on PS surfaces, up to 60.29 and 82.32% compared to no-MB PS surfaces, and no-MB uncoated surfaces, correspondingly, due to the appropriate size, stability, and negative charges of the MB shielding layer. On the other hand, OTS coatings had an intrinsic antiadhesion effect (69.83% compared to uncoated surface), given that the negatively charged OTS-aqueous interface or surface porosity nature of the coating prohibited the attachment of MBs, leading to the elimination of the antifouling effect of MBs. Ultimately, MBs gave better shielding results than surface modification when compared to uncoated surfaces and hence can be applied more widely.


Assuntos
Biofilmes , Staphylococcus aureus , Microbolhas , Aderência Bacteriana , Antibacterianos/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...